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Multi-Talker ASR

• Automatic speech recognition (ASR) will contribute to:

• Solve a labor shortage (if incorporated with dialog system, text mining, etc.)

• Improve human well-being by freeing humans from simple labors

(e.g., transcription, documentation)

• Ease a language barrier (if incorporated with translation)

• Situations where we want to transcribe speech usually have multiple speakers

→ Not only “what was spoken” but also “who spoke when” is essential
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Speaker Diarization in Multi-Talker ASR

Speaker diarization (who spoke when) plays an essential role in multi-talker ASR

• ASR → Speaker diarization chain [Chen+’20]

• Speaker diarization → Speech separation → ASR chain [Watanabe+’20]
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Hello. I’m calling about a coffee machine I 

purchased from your Web site. It stopped 

working even though I haven’t had it for very 

long. I expected it to last much longer than this. 

Oh, I’m sorry to hear that. Our warranty covers 

products for up to a year. Do you know when 

you bought it? I’ve had it for a little over a year, 

so the warranty has probably just expired. This is 

so disappointing. Well, I’ll tell you what we can 

do. Although we can’t replace it, since you’re a 

valued customer I can offer you a coupon for 

forty percent off your next purchase.
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Hello. I’m calling about a coffee machine 

I purchased from your Web site. It 

stopped working even though I haven’t 

had it for very long. I expected it to last 

much longer than this.

Oh, I’m sorry to hear that. Our warranty 

covers products for up to a year. Do you 

know when you bought it?

I’ve had it for a little over a year, so the 

warranty has probably just expired. This 

is so disappointing.

Well, I’ll tell you what we can do. 

Although we can’t replace it, since 

you’re a valued customer I can offer you 

a coupon for forty percent off your next 

purchase.

Speaker
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* The conversational text was taken from TOEIC sample questions. URL: https://www.iibc-global.org/toeic/toeic_program/sample_all.html#L3
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Hello. I’m calling about a coffee machine 

I purchased from your Web site. It 

stopped working even though I haven’t 

had it for very long. I expected it to last 

much longer than this.

Oh, I’m sorry to hear that. Our warranty 

covers products for up to a year. Do you 

know when you bought it?

I’ve had it for a little over a year, so the 

warranty has probably just expired. This 

is so disappointing.

Well, I’ll tell you what we can do. 

Although we can’t replace it, since 

you’re a valued customer I can offer you 

a coupon for forty percent off your next 

purchase.



Preliminary

• Discussions in this presentation are based on time-frequency features

• We illustrates a sequence of features like :
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Time-frequency features (2-D)
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time
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• Set-partitioning problem

• Assign a single speaker or silence to each time frame

• Adopted by most cascaded approaches

• Multi-label classification problem

• Estimate all the active speakers for each time frame

• Adopted by most end-to-end approaches

Two Problem Definitions for Speaker Diarization
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Cascaded Approach [Sell+’14] [Landini+’22]

• Method

Cascade of the following:

1. Speech activity detection

2. Speaker embedding extraction

3. Clustering

4. (Optional) overlap detection and 

speaker assignment

• Pros & Cons

✘ Complicated pipeline

✘ Cannot handle speaker overlap

(without additional modules)

✔ The number of speakers can be set 

flexibly in the clustering step
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(e.g., i-vectors, x-vectors, d-vectors)
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Direction-of-Arrival-based Approach [Araki+’08] [Ishiguro+’11]

• Method

Cascade of the following:

1. Speech activity detection

2. Direction-of-arrival (DOA) estimation

3. Clustering

• Variant of cascaded approach

• Pros & Cons

✔ Can benefit from spatial information

✘ Speakers from the same direction

cannot be distinguished
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Multi-channel features

Speech activities

DOA features
(e.g., GCC-PHAT)

Diarization results

𝒛2 𝒛3 𝒛4 𝒛5 𝒛7 𝒛8
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1. Speech activity 
detection

2. DOA estimation



End-to-End Approach [Fujita+’19]

End-to-End Neural Diarization (EEND)

• Method
• Estimate multiple speakers’ speech activities 

simultaneously from input acoustic features

• Pros & Cons
✔ Simple pipeline (only a single neural network)

✔ Can handle speaker overlap

✘ The architecture fixes the number of speakers

The details will be introduced later
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Comparison of Various Approaches

• End-to-end approach is superior at many points, but has difficulty on the number of speakers

• End-to-end approach has room for improvement by leveraging spatial information

• If we ignore the complexity of the pipeline, it is hard to discard the cascaded approach as long 

as it can handle speech overlap
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Purpose of This Thesis

1. To improve the utility of speaker diarization methods…

• End-to-end approach is superior at many points, but have difficulty on the number of speakers

→ Propose an end-to-end method that even works when the number of speakers is unknown

• End-to-end approach has room for improvement by leveraging spatial information

→ Propose an end-to-end method that accepts multi-channel inputs

• It is hard to discard the cascaded approach as long as it can handle speech overlap

→ Propose to use the end-to-end approach for overlap handling of the cascaded approach

2. To utilize speaker diarization for multi-talker ASR…

• How speaker diarization contributes to multi-talker ASR is not well explored

→ Propose a diarization-driven meeting transcription system

• Speech separation conditioned on speaker diarization results is quite slow

→ Propose a block-online algorithm of diarization-conditioned speech separation
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Thesis Overview
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Hello. I’m calling about a coffee machine 

I purchased from your Web site. It 

stopped working even though I haven’t 

had it for very long. I expected it to last 

much longer than this.

Oh, I’m sorry to hear that. Our warranty 

covers products for up to a year. Do you 

know when you bought it?

I’ve had it for a little over a year, so the 

warranty has probably just expired. This 

is so disappointing.

Well, I’ll tell you what we can do. 

Although we can’t replace it, since 

you’re a valued customer I can offer you 

a coupon for forty percent off your next 

purchase.

Chapter 7

Block online speech separation using speaker 

diarization results
[SLT’21]

Chapter 6

Speaker-diarization-driven meeting transcription
[INTERSPEECH’20]

Chapter 3

End-to-end speaker diarization for 

unknown numbers of speakers
[TASLP’22] [TASLP’23] [INTERSPEECH’20] [ASRU’21]

Chapter 4

Multi-channel

end-to-end speaker diarization
[ICASSP’22] [SLT’22]

Chapter 5

End-to-end speaker diarization

as post-processing
[ICASSP’21]



Evaluation Metric: Diarization Error Rate (DER)

• Definition

• Common evaluation metric of speaker diarization

• The lower, the better

• Not upper-bounded by 100 %

12

DER =
𝑇MI + 𝑇FA + 𝑇CF

𝑇Speech

𝑇Speech : Duration of speech (17=9+2+3+3)

𝑇MI : Duration of missed speech (3)

𝑇FA : Duration of false alarmed speech (2)

𝑇CF : Duration of speaker confusion (2)

Steve

Tony

Speaker 1

Speaker 2

Miss

9 2

Speaker confusion

False alarm

3 3

Reference

Prediction

Speaker identities 

are not considered in 

speaker diarization

=
3 + 2 + 2

9 + 2 + 3 + 3
= 41.1%



Summary of Chapter 3

• Problem

• The conventional EEND assumes that the number of speakers is known in advance

• Solutions

• 3-1: End-to-end speaker diarization for flexible numbers of speakers

• Core contribution: Encoder-decoder based attractors for EEND (EEND-EDA)

• Related publications: [INTERSPEECH’20] [TASLP’22]

• 3-2: End-to-end speaker diarization for unlimited numbers of speakers

• Core contribution: Use of attractors from calculated from global and local contexts (EEND-GLA)

• Related publication: [ASRU’21] [TASLP’23]

• 3-3: Online end-to-end speaker diarization for unlimited numbers of speakers

• Core contribution: An extension to speaker-tracing buffer to make it compatible with EEND-GLA

• Related publication: [TASLP’23]
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End-to-End Neural Diarization [Fujita+’19]
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End-to-End Neural Diarization [Fujita+’19]
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Transformer encoder [Vaswani+’17]

Query

Key

Value
Input

Attention

weights

Self-attention

Feed-forward

network

Output

• Architecture to treat time-series data

(Positional encodings are omitted in this study) 

• High performance in various tasks (e.g., NLP, CV, audio)



End-to-End Neural Diarization [Fujita+’19]
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Frame-wise 

embeddings

Posteriors

𝒆1, … , 𝒆𝑇

𝑊 ∈ ℝ𝑆×𝐷, 𝒃 ∈ ℝ𝑆

𝑆: # of speakers (=3)

𝒑1, … , 𝒑𝑇

…

…
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𝑇-frame
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𝐷

𝑇
𝑆
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𝒛1, … , 𝒛𝑇

Learnable parameters

Element-wise

sigmoid operation

𝑝𝑠,𝑡 =
1

1 + exp −𝑧𝑠,𝑡

𝒛𝑡 ∈ ℝ𝑆 ↦ 𝒑𝑡 ∈ 0,1 𝑆

𝑆



End-to-End Neural Diarization [Fujita+’19]
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Permutation-free diarization loss

ℒdiar =
1

𝑇𝑆
min

𝑃𝜙∈Φ(𝑆)


𝑡=1

𝑇

BCE (ෝ𝒚𝑡, 𝑃𝜙𝒚𝑡)

𝑆: Number of speakers

𝑇:       Number of frames

Φ(𝑆): Set of all the possible

𝑆 × 𝑆 permutation matrices

𝑃𝜙:     Permutation matrix of 𝜙

BCE:   Binary cross entropy

𝑇-frame

𝑇-frame

…
…
…

…
…
…

…
…

…
…
……

Posteriors

ෝ𝒚1, … , ෝ𝒚𝑇

BCE=0.1

BCE=0.5

BCE=4.0

Use min. BCE for 

backpropagation

Permuted labels

𝑃𝜙 𝒚1, … , 𝒚𝑇



Problems of Conventional EEND

19

Features

Frame-wise

embeddings

Posteriors

Labels

Transformer 
encoders

…

…

…

Permutation-free

diarization loss

Spk1

Spk2

Spk3

…

…

…

…

ℒdiar

𝐹-dim.

𝐷-dim. …

Problem 1: Fixed number of speakers

Problem 2: Not speaker adaptive
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✘ Sufficiently large 𝑆 eases the issue,

but the performance degradesPosition-wise
feed-forward
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𝑊 ∈ ℝ𝑆×𝐷, 𝒃 ∈ ℝ𝑆
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𝒛𝑡 = 𝑊 𝒆𝑡 + 𝒃

Learnable parameters

𝑆

✘ Fixed parameters regardless of the 

speakers appeared in the recording

𝑊
1st speaker

2nd speaker

3rd speaker



• Recurrent selective attention network [Kinoshita+’18]

• Extract speakers one-by-one using residual masks

✔ Estimate the number of speakers simultaneously

✘ Residual mask cannot be determined for speaker diarization

• Speech separation: 0 or 1 speaker at each time-frequency bin

• Speaker diarization: No restriction of the number of speakers at each time frame

Related Work on Speech Separation
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• Deep attractor network [Zhuo+’17]

1. Calculate speaker-wise attractors (representative vectors)

using K-means clustering of time-frequency-bin-wise embeddings

2. Estimate masks with the dot-products of the attractors and embeddings

✔ No need for residual masks

✔ Adaptive attractors for each speaker 

✘ Need to set the number of speakers manually

(   : Embedding)

Related Work on Speech Separation
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Proposed Method: EEND-EDA
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EEND with Encoder-Decoder Based Attractors
(EEND-EDA)

Core idea:

1. Calculate adaptive speaker-wise attractors
in an autoregressive manner

2. Estimate the number of speakers simultaneously
by evaluating the existence of each attractor

𝑇-frame

𝑇-frame

Speaker-wise
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Adaptive Attractors (Ex. Two-Speaker Case)
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Speaker 1
Silence

Overlap

Speaker 2

𝐷-dim. …
𝑇-frame

Frame-wise
embeddings

Visualization

in 2-D space

Speaker 1

exists / not exists

Speaker 2

exists / not exists

Speaker 1’s attractor (ideal)

Speaker 2’s

attractor

(ideal)

• Attractors are never obtained via PCA / K-means clustering.



EDA: Encoder-Decoder Based Attractors

Frame-wise embeddings

Proposed Method: EEND-EDA
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Attractor existence loss:
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1

𝑆 + 1


𝑠=1

𝑆+1

BCE (𝑝𝑠, 𝑙𝑠)

• Loss to optimize the number 

of output speakers (attractors)

Total loss:

ℒ = ℒdiar + 𝛼ℒexist



Inference

Frame-wise embeddings

Proposed Method: EEND-EDA
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መ𝑆 = max 𝑠 ∣ 𝑠 ∈ ℤ+⋀𝑝𝑠 ≥ 0.5
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2. Use the first መ𝑆 attractors 

to calculate posteriors



Experimental Settings

• Model configuration

• 4-stacked Transformer encoders for the embedding extractor

• Experiments

• Fixed-number-of-speaker experiments

• Purpose: To see if the proposed speaker adaptive attractors improve the performance

1. Train & evaluate a model using the simulated 2 (or 3)-speaker dataset

2. Finetune & evaluate the model using the real 2 (or 3)-speaker dataset

• Flexible-number-of-speaker experiments

• Purpose: To see if the proposed method can treat flexible numbers of speakers

1. Train a model using simulated the 2-speaker dataset

2. Finetune & evaluate the model using the simulated {1,2,3,4,5}-speaker datasets 

3. Finetune & evaluate the model using the real multi-speaker datasets
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• Simulation protocol

Experimental Settings – Simulated Datasets
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Steve Tony

Bruce Natasha

Clint Nick

Bruce

Clint

Sample

𝐾 speakers

Sample 𝑁 utterances 

&

Concatenate them 

with silences

Sample Noise

Utterance pool
(from NIST SRE & Switchboard corpora)

Noise pool
(from MUSAN corpus [Snyder+’15])

• Mix with a random signal-to-

noise ratio (SNR=5,10,15,20 dB)

• Convolve a simulated room 

impulse response

Simulated mixture



Experimental Settings – Simulated Datasets

• Data sources

• Utterance

• Switchboard-2 (Phase I & II & III)

• Switchboard Cellular (Part 1 & 2)

• NIST SRE (2004, 2005, 2006, 2008)

• Noise

• MUSAN [Snyder+’15]

• Overlap ratios are controlled by changing 

the silence length between utterances

• The set of speakers in the train/test sets 

are not overlapped (Open-set setting)
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Dataset #Spk #Mixtures Overlap ratio (%)

Train

Sim1spk 1 100,000 0.0

Sim2spk 2 100,000 34.1

Sim3spk 3 100,000 34.2

Sim4spk 4 100,000 31.5

Sim5spk 5 100,000 30.3

Test

Sim1spk 1 500 0.0

Sim2spk 2 500 34.4 / 27.3 / 19.1

Sim3spk 3 500 34.7 / 27.4 / 19.2

Sim4spk 4 500 32.0

Sim5spk 5 500 30.7



Experimental Settings – Real Datasets

• CALLHOME

• Telephone conversation

(mostly in English but not limited to)

• CALLHOME-kspk is a k-speaker portion 

of this dataset

• CSJ

• Face-to-face conversation in Japanese

• DIHARD II & III

• Various domains, various languages

• Audiobook, broadcast, clinical, court, 

meeting, restaurant, web video, etc.
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Dataset #Spk #Mixtures

Overlap

ratio (%)

Adapt

CALLHOME-2spk 2 155 14.0

CALLHOME-3spk 3 61 19.6

CALLHOME 2-7 249 17.0

DIHARD II dev [Ryant+’19] 1-10 192 9.8

DIHARD III dev [Ryant+’21] 1-10 254 10.7

Test

CALLHOME-2spk 2 148 13.1

CSJ [Maekawa’03] 2 54 20.1

CALLHOME-3spk 3 74 17.0

CALLHOME 2-6 250 16.7

DIHARD II eval [Ryant+’19] 1-9 194 8.9

DIHARD III eval [Ryant+’21] 1-9 259 9.2



Results of Two-Speaker Experiments

• Diarization error rates (DERs) (%) on two-speaker mixtures

• EEND-based methods outperformed cascaded approach methods

• EDA improved the performance of EEND even when the number of speakers is fixed to two
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Method

Simulated Real

Sim2spk

ρ=34.4%

Sim2spk

ρ=27.3%

Sim2spk

ρ=19.1%

CALLHOME-2spk

ρ=13.1%

CSJ

ρ=20.1%

i-vector clustering 33.74 30.93 25.96 12.10 27.99

x-vector clustering 28.77 24.46 19.78 11.53 22.96

EEND [Fujita+’19] 4.56 4.50 3.85 9.54 20.48

EEND-EDA 2.69 2.44 2.60 8.07 16.27

ρ: overlap ratio

Cascaded

End-to-end



Visualization

• Frame-wise embeddings and speaker-wise attractors visualized using PCA
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• Embeddings of Silence, Speaker 1, and Speaker 2 are well separated

• Embeddings of Overlap are distributed between those of Speaker 1 and Speaker 2

• Attractors are successfully calculated for each of two speakers



Results of Three-Speaker Experiments

• Diarization error rates (DERs) (%) on three-speaker mixtures

• Similar to the results on two-speaker mixtures, EEND-EDA outperformed cascaded and 

conventional end-to-end approaches
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Method

Simulated Real

Sim3spk

ρ=34.4%

Sim3spk

ρ=27.4%

Sim3spk

ρ=19.2%

CALLHOME-3spk

ρ=17.0%

x-vector clustering 31.78 26.06 19.55 19.01

EEND [Fujita+’19] 8.69 7.64 6.92 14.00

EEND-EDA 8.38 7.06 6.21 13.92

ρ: overlap ratio

Cascaded

End-to-end



Results of Flexible-Number-of-Speaker Experiments

• DERs (%) on the simulated datasets

• EEND was trained to output null

speech activities for absent speakers

• EEND-EDA outperformed

conventional EEND in every conditions

• DERs (%) on CALLHOME (with oracle speech activity detection)

• EEND-EDA outperformed x-vector

clustering and conventional EEND

• EEND-EDA is better when #Speakers≤4,

while x-vector clustering is better when

#Speakers>4
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Method

Simulated dataset

Sim1spk

ρ=0.0%

Sim2spk

ρ=34.4%

Sim3spk

ρ=34.7%

Sim4spk

ρ=32.0%

Sim5spk

ρ=30.7%

EEND [Fujita+’19] 0.50 3.95 9.18 12.24 17.42

EEND-EDA 0.36 3.65 7.70 9.97 11.95

Method

#Speakers

2 3 4 5 6 All

X-vector clustering 9.44 13.89 16.05 13.87 24.73 13.28

EEND [Fujita+’19] 6.51 15.07 26.09 36.47 46.93 16.79

EEND-EDA 5.85 9.97 12.61 24.04 26.06 10.46



Results of Flexible-Number-of-Speaker Experiments

• DERs (%) on DIHARD II and DIHARD III (with oracle speech activity detection)

• Breakdown of the DERs on DIHARD III

• Limitation: EEND-EDA performed worse when the number of speaker was large
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Method

#Speakers

1 2 3 4 5 6 7 8 9

X-vector (TDNN) clustering 1.30 11.43 16.76 23.09 44.99 26.43 25.61 35.57 2.03

EEND-EDA 2.80 7.52 15.79 25.63 47.66 31.73 35.47 38.19 18.73

Method

Datasets

DIHARD II

ρ=8.9%

DIHARD III

ρ=9.2%

X-vector (TDNN) clustering [Landini+’20] [Horiguchi+’21] 18.21 15.83

EEND [Fujita+’19] 23.25 16.19

EEND-EDA 20.54 14.91



Summary of Chapter 3

• Problem

• The conventional EEND assumes that the number of speakers is known in advance

• Solutions

• 3-1: End-to-end speaker diarization for flexible numbers of speakers

• Core contribution: Encoder-decoder based attractors for EEND (EEND-EDA)

• Related publications: [INTERSPEECH’20] [TASLP’22]

• 3-2: End-to-end speaker diarization for unlimited numbers of speakers

• Core contribution: Use of attractors from calculated from global and local contexts (EEND-GLA)

• Related publication: [ASRU’21] [TASLP’23]

• 3-3: Online end-to-end speaker diarization for unlimited numbers of speakers

• Core contribution: An extension to speaker-tracing buffer to make it compatible with EEND-GLA

• Related publication: [TASLP’23]
35



• Limitation

• The maximum number of speakers to be output from EEND-EDA
is empirically limited by the training dataset

• Which part of EEND-EDA causes this limitation?

Limitation of EEND-EDA

36
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ex) When EEND-EDA was trained

using {1,2,3,4}-speaker mixtures

Features

Frame-wise

embeddings

Posteriors

Transformer encoders

…

…

…

…

𝐹-dim.

𝐷-dim. …

𝑇-frame

𝑇-frame

Global

attractors

EDA

Visualization of the embeddings using t-SNE

Speakers are well-separated in the embedding space

even when the input contains more than four speakers

→ EDA limits the number of output speakers

Five-speaker mixtures

Six-speaker mixtures



Related Work: EEND-vector Clustering [Kinoshita+’21]

1. Estimate diarization results as well as speaker embeddings from each short block-wise features

2. Clustering the speaker embeddings to solve inter-block speaker permutation

✔ The number of speakers is no longer limited

✘ Not speaker-adaptive posterior estimation

✘ Require speaker identities across recordings to construct the global speaker embedding dictionary

✘ Require somewhat long block (e.g., 30 sec) to obtain reliable speaker embeddings 37
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Speaker embedding
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EEND with Local Attractors – Basic Idea
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Embeddings

Posteriors

Local EDA

Local attractors

Features

Frame-wise embeddings

Transformer encoders

Split the embeddings 
into short blocks

(5 sec in this study)

Perform diarization 
using EDA

for each block

Find the optimal
inter-block speaker 

correspondence based 
on the similarity of 

local attractors

Local EDA

Local attractors

𝒂1
1
𝒂2

1 𝒂1
2

Local EDA

Local attractors

Block#1 Block#2 Block#L

Posteriors

𝒂1
𝐿
𝒂2

𝐿
𝒂3

𝐿

…
…

1

2

3

…

…

…

…

• EDA limits the number of speakers,

but the number of speakers in a short 

period is small so it is no more a problem



EEND with Local Attractors – Training
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Embeddings

Posteriors

Features

Frame-wise embeddings

Transformer encoders

Block#1 Block#2 Block#L

…

…

Local EDA

Local attractors

Local EDA

Local attractors

𝒂1
1
𝒂2

1 𝒂1
2

Local EDA

Local attractors

𝒂1
𝐿
𝒂2

𝐿
𝒂3

𝐿

Spk1

Spk3
Spk2

Spk1

Spk2

Spk3

…

ℒdiar
1 ℒdiar

2
ℒdiar

𝐿

Attractor 
existence 

probabilities

𝑝1
1 𝑝2

1 𝑝3
1

Labels

1 1 0

ℒexist
1

Attractor 
existence 

probabilities

𝑝1
2 𝑝2

2

Labels

1 0

ℒexist
2

Attractor 
existence 

probabilities

𝑝1
𝐿 𝑝2

𝐿

Labels

1 1 1 0

ℒexist
𝐿

Total loss:

ℒlocal =
1

𝐿


𝑙=1

𝐿

ℒdiar
𝑙

+ 𝛼ℒexist
𝑙

+ 𝛾ℒpair

1st term:
Average of block-wise diarization 

loss and attractor existence loss

𝐿: Number of blocks

• By calculating ℒdiar
𝑙

, the 

optimal correspondence 

between local attractors and 

speakers are obtained



EEND with Local Attractors – Training

40

Embeddings

Posteriors

Features

Frame-wise embeddings

Transformer encoders

Block#1 Block#2 Block#L

…

…

Local EDA

Local attractors

Local EDA

Local attractors

𝒂1
1
𝒂2

1 𝒂1
2

Local EDA

Local attractors

𝒂1
𝐿
𝒂2

𝐿
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𝐿

Spk1
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Spk3

…
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1 ℒdiar
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ℒdiar

𝐿

Attractor 
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𝑝1
1 𝑝2

1 𝑝3
1

Labels

1 1 0
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1

Attractor 
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𝑝1
2 𝑝2

2

Labels

1 0

ℒexist
2

Attractor 
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𝑝1
𝐿 𝑝2

𝐿

Labels

1 1 1 0
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𝐿

Relative speaker 
embeddings

𝒃1
1
𝒃2

1

Relative speaker 
embeddings

Relative speaker 
embeddings

𝒃1
𝐿
𝒃2

𝐿
𝒃3

𝐿
𝒃1

2

Local attractors Local attractors

𝒂1
1
𝒂2

1 𝒂1
2

Local attractors

𝒂1
𝐿
𝒂2

𝐿
𝒂3

𝐿

Affinity matrix

𝒃1
1
𝒃2

1
𝒃1

2 𝒃1
𝐿
𝒃2

𝐿
𝒃3

𝐿

𝒃1
1

𝒃2
1

𝒃1
2

𝒃1
𝐿

𝒃2
𝐿

𝒃3
𝐿

…

…

… …𝑅 = 𝑟𝑖𝑗

𝑟𝑖𝑗 =
𝒃𝑖 ∙ 𝒃𝑗

𝒃𝑖 𝒃𝑗

Transformer decoderTransformer decoder Transformer decoder

Total loss:

ℒlocal =
1

𝐿


𝑙=1

𝐿

ℒdiar
𝑙

+ 𝛼ℒexist
𝑙

+ 𝛾ℒpair

2nd term:
Pairwise loss to make the angle 

between relative speaker 

embeddings of the same speaker 

be zero and those of different 

speakers be at least arccos 𝛿 apart

ℒpair = 

𝑖,𝑗∈ 1,…,𝑆∗

1

𝑆2𝑐𝑖𝑐𝑗
𝑓 𝒃𝑖 , 𝒃𝑗

𝑓 𝒃𝑖 , 𝒃𝑗

=

(𝑖-th and 𝑗-th local

attractors correspond

to the same speaker)

(𝑖-th and 𝑗-th local

attractors correspond

to the different speakers)

1 − 𝑟𝑖𝑗

max 0, 𝑟𝑖𝑗 − 𝛿

𝑆: # of speakers,   𝑆∗: # of local attractors

𝑐𝑖 : # of local attractors assigned to the 𝑖-th speaker 



EEND with Local Attractors – Inference
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EEND with Local Attractors – Inference
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speaker

embeddings

Posteriors
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Block#1 Block#2

…

1. Estimate the number of speakers

2. Apply CLC-Kmeans clustering [Yang+’13]
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𝜆1

⋱
𝜆𝑆∗

𝑉−1 𝜆1 ≥ ⋯ ≥ 𝜆𝑆∗ : Eigenvalues

𝑉: Eigenvectors

1-1. Apply matrix decomposition

1-2. Estimate the number of speakers 

Eigenvalues are good indicators 

of the size of clusters

መ𝑆 = min
1≤𝑠≤𝑆∗−1

𝜆𝑠≥1

𝜆𝑠+1
𝜆𝑠

To satisfy cannot-link constraints

(The attractors from the same block must be 

assigned to different clusters)



EEND-GLA: EEND with Globa and Local Attractors
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Local EDA

Local attractors
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Frame-wise embeddings

Transformer encoders
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Posteriors based on

global attractors

…
…

…

Posteriors based on

local attractors

…
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…

…

Global-attractor-based diarization is still 

powerful when #Speakers is small

→ Use both global and local attractors

Training:

Inference:
When EEND-GLA is trained using at most N-

speaker mixtures

• If the estimated #Speakers ≥ N

→ Use the results based on global attractors

• If the estimated #Speakers < N

→ Use the results based on local attractors

ℒ = ℒglobal + ℒlocal
Loss of EEND-EDA

Switch based on
#Speakers



Experimental Settings

• Model configuration

• EEND-GLA-Small: The proposed method with 4-layer Transformer encoders

• EEND-GLA-Large: The proposed method with 6-layer Transformer encoders

• Datasets
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Dataset #Spk #Mixtures

Overlap 

ratio

Train

Sim1spk 1 100,000 0.0 %

Sim2spk 2 100,000 34.1 %

Sim3spk 3 100,000 34.2 %

Sim4spk 4 100,000 31.5 %

Test

Sim1spk 1 500 0.0 %

Sim2spk 2 500 34.4 %

Sim3spk 3 500 34.7 % 

Sim4spk 4 500 32.0 %

Sim5spk 5 500 30.7 %

Sim6spk 6 500 29.9 %

Dataset #Spk #Mixtures

Overlap 

ratio

Adapt

CALLHOME 2-7 249 17.0 %

DIHARD II dev 1-10 192 9.8 %

DIHARD III dev 1-10 254 10.7 %

Test

CALLHOME 2-6 250 16.7 %

DIHARD II eval 1-9 194 8.9 %

DIHARD III eval 1-9 259 9.2 %

Simulated conversational datasets Real conversational datasets

Not observed using training



Results on the Simulated Datasets

• DERs (%)

• EEND-GLA significantly reduced DER of

unseen numbers of speakers

• Speaker counting accuracy

• The number of speakers was predicted

more accurately when the number of

speakers is five or larger
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#Speakers

1 2 3 4 5 6

X-vector clustering 37.42 7.74 11.46 22.45 31.00 38.62

EEND-EDA 0.15 3.19 6.60 8.68 22.43 33.28

EEND-GLA-Small 0.25 3.53 6.79 8.98 12.44 17.98

EEND-GLA-Large 0.09 3.54 5.74 6.79 12.51 20.42

1 2 3 4 5 6

1 500 0 0 0 0 0

2 0 482 0 0 0 0

3 0 17 435 5 1 0

4 0 1 65 447 224 139

5 0 0 0 48 268 337

6 0 0 0 0 7 24

7+ 0 0 0 0 0 0

Predicted

#Speakers

1 2 3 4 5 6

1 498 0 0 0 0 0

2 2 474 0 0 0 0

3 0 25 451 17 2 0

4 0 1 33 412 78 30

5 0 0 10 62 361 183

6 0 0 6 7 47 229

7+ 0 0 0 2 12 57

Reference #Speakers

EEND-EDA: Acc. 71.9% EEND-GLA-Small: Acc. 80.8%

Reference #Speakers

Observed during training Not observed

during training

Observed Not observed Observed Not observed



Results on the Real Recordings

• EEND-GLA performed better 

than EEND-EDA when the 

number of speakers is large
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DIHARD II
#Speakers

All≤4 ≥5

X-vector clustering + overlap handling 
[Landini+’20]

21.34 39.85 27.11

X-vector clustering + overlap-aware 

resegmentation [Bredin+’21]
21.41 36.93 26.25

EEND-EDA 22.09 47.66 30.07

EEND-GLA-Small 22.24 44.92 29.31

EEND-GLA-Large 21.40 43.62 28.33

DIHARD III
#Speakers

All≤4 ≥5

X-vector clustering + overlap handling 
[Horiguchi+’21]

16.38 42.51 21.47

X-vector clustering + overlap-aware 

resegmentation [Coria+’21]
15.32 35.87 19.33

EEND-EDA 15.55 48.30 21.94

EEND-GLA-Small 14.39 44.32 20.23

EEND-GLA-Large 13.64 43.67 19.49

CALLHOME 
#Speakers

All2 3 4 5 6

X-vector clustering [Landini+’21]* 9.44 13.89 16.05 13.87 24.73 13.28

EEND-EDA 7.83 12.29 17.59 27.66 37.17 13.65

EEND-vector clustering [Kinoshita+’21] 7.96 11.93 16.38 21.21 23.10 12.49

EEND-GLA-Small 6.94 11.42 14.49 29.76 24.09 11.92

EEND-GLA-Large 7.11 11.88 14.37 25.95 21.95 11.84

* Oracle speech segments were used for x-vector clustering



Summary of Chapter 3

• Problem

• The conventional EEND assumes that the number of speakers is known in advance

• Solutions

• 3-1: End-to-end speaker diarization for flexible numbers of speakers

• Core contribution: Encoder-decoder based attractors for EEND (EEND-EDA)

• Related publications: [INTERSPEECH’20] [TASLP’22]

• 3-2: End-to-end speaker diarization for unlimited numbers of speakers

• Core contribution: Use of attractors from calculated from global and local contexts (EEND-GLA)

• Related publication: [ASRU’21] [TASLP’23]

• 3-3: Online end-to-end speaker diarization for unlimited numbers of speakers

• Core contribution: An extension to speaker-tracing buffer to make it compatible with EEND-GLA

• Related publication: [TASLP’23]
47



Related Work: Online Cascaded Speaker Diarization

• Each module needs to be replaced to the 

online one

• Especially, online clustering causes a severe 

performance drop

• High performance offline clustering methods 

are often two-staged [Landini+’22] [Bredin+’21]

• Therefore, it is not applicable to online 
processing, i.e., we need completely different 
clustering algorithm for online processing
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DIHARD II DIHARD III

Offline x-vector 

clustering [Bredin+’21]
26.25 19.33

Online x-vector 

clustering [Coria+’21]
34.99 27.55

Features

Speech activities

Speaker embeddings
(e.g., i-vectors, x-vectors, d-vectors)

Diarization results

𝒛2 𝒛3 𝒛4 𝒛5 𝒛7 𝒛8

𝒛2 𝒛3 𝒛4 𝒛5 𝒛7 𝒛8

Online Clustering

Online Speech activity 
detection

Online Speaker 
embedding extraction



Related Work: Online EEND

• Speaker tracing buffer (Frame-wise speaker tracing buffer; FW-STB) [Xue+’21]
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• Assume block-wise input features 𝑋𝑛 𝑛 = 1, 2, …

• FW-STB stores the features and corresponding estimated results 

• 𝑋𝑛−1
(buf)

: Features

• 𝑌𝑛−1
(buf)

: Previously estimated diarization results



Related Work: Online EEND

• Speaker tracing buffer (Frame-wise speaker tracing buffer; FW-STB) [Xue+’21]
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1. Estimate diarization results from 𝑋𝑛−1
(buf)

𝑋𝑛

2. Align the order of speakers to maximize the 

correlation between the new results and 𝑌𝑛−1
(buf)

3. Output the estimated results 𝑌𝑛



Related Work: Online EEND

• Speaker tracing buffer (Frame-wise speaker tracing buffer; FW-STB) [Xue+’21]
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FW-STB is updated by sampling informative frames

• The frames where only one speaker is dominant are selected

• The features and corresponding estimation of those frames are 

stored in the buffer

✘ The frames are not consecutive → Not compatible with EEND-GLA



Proposed Method: Online Extension for EEND-GLA 

• Block-wise speaker tracing buffer (BW-STB)

52

Block-wise speaker tracing buffer consists of two types of buffers

• Block-wise sampling buffer:
• Consists of multiple blocks

• Each block stores features and corresponding results of consecutive frames

• First-in-first-out (FIFO) buffer:
• Consists of a single block

• Stores recent features



Proposed Method: Online Extension for EEND-GLA 

• Block-wise speaker tracing buffer (BW-STB)

53

1. Put the input feature 𝑋𝑛 to the FIFO buffer

2. Estimate diarization results and solve speaker permutation in the same 

manner as FW-STB

3. Finally, output the results that correspond to 𝑋𝑛



Proposed Method: Online Extension for EEND-GLA 

• Block-wise speaker tracing buffer (BW-STB)

54

Block-wise sampling to update the buffer

✔ BW-STB can be used with EEND-GLA because each block in BW-STB 

stores features and the corresponding results of consecutive frames

✔ Use of the FIFO buffer together enables low-latency processing



Experimental Settings for Online Experiments

• Model configuration

• EEND-GLA-Small: The proposed method with 4-layer Transformer encoders

• EEND-GLA-Large: The proposed method with 6-layer Transformer encoders

• Datasets (same as the offline experiments)

• Simulated datasets

• Training set: Sim{1,2,3,4}spk

• Evaluation set: Sim{1,2,3,4,5,6}spk

• Real datasets

• CALLHOME

• DIHARD II

• DIHARD III

• Settings for online experiments

• Features are input every second (=10 features)

• Set the buffer length 100 seconds

• BW-STB: Block-wise sampling buffer of 95 seconds length (5 seconds * 19 blocks) & FIFO buffer of 5 seconds
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Results on the Simulated Datasets

• DERs (%) on the simulated mixtures

• EEND-GLA with BW-STB improved

DERs of unseen numbers of speakers 

compared to EEND-EDA with FW-STB

• Speaker counting accuracy

• The number of speakers was predicted

more accurately when the number of

speakers is five or larger
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1 2 3 4 5 6

1 376 0 0 0 0 0

2 120 244 0 0 0 0

3 4 249 252 1 1 0

4 0 7 245 449 271 172

5 0 0 3 50 222 314

6 0 0 0 0 7 14

7+ 0 0 0 0 0 0

Predicted

#Speakers

1 2 3 4 5 6

1 411 0 0 0 0 0

2 84 343 0 0 0 0

3 5 156 370 3 0 0

4 0 1 109 302 16 0

5 0 0 20 181 364 38

6 0 0 1 13 114 385

7+ 0 0 0 1 6 77

Reference #Speakers
EEND-EDA + FW-STB EEND-GLA-Small + BW-STB

Reference #Speakers

Observed Not observed Observed Not observed

#Speakers

1 2 3 4 5 6

BW-EDA-EEND [Han+’21] 1.03 6.10 12.58 19.17 N/A N/A

EEND-EDA + FW-STB [Xue+’21] 1.50 5.91 9.79 11.85 26.63 37.25

EEND-GLA-Small + BW-STB 1.19 5.18 9.41 13.19 16.95 22.55

EEND-GLA-Large + BW-STB 1.12 4.61 8.14 11.38 17.27 25.77

Observed during training Not observed

during training



Results on the Real Recordings

• EEND-GLA + BW-STB improved the DERs from EEND-EDA + FW-STB when # of speakers is large (≥5)

• EEND-based methods suppressed the degradation due to online processing
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Online
#Speakers

All≤4 ≥5

X-vector clustering [Coria+21] 27.00 52.62 34.99

EEND-EDA + FW-STB [Xue+’21] 25.63 50.45 33.37

EEND-GLA-Small + BW-STB 23.96 48.06 31.47

EEND-GLA-Large + BW-STB 22.62 47.06 30.24

Offline
#Speakers

All≤4 ≥5

X-vector clustering [Bredin+’21] 21.41 36.93 26.25

EEND-EDA 22.09 47.66 30.07

EEND-GLA-Small 22.24 44.92 29.31

EEND-GLA-Large 21.40 43.62 28.33

+8.74%

+3.30%

+2.16%

+1.91%

DIHARD II dataset



Results on the Real Recordings

• EEND-GLA + BW-STB improved the DERs from EEND-EDA + FW-STB when # of speakers is large (≥5)

• EEND-based methods suppressed the degradation due to online processing
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Online
#Speakers

All≤4 ≥5

X-vector clustering [Coria+’21] 21.07 54.28 27.55

EEND-EDA + FW-STB [Xue+’21] 19.00 50.21 25.09

EEND-GLA-Small + BW-STB 15.87 47.24 22.00

EEND-GLA-Large + BW-STB 14.81 45.17 20.73

Offline
#Speakers

All≤4 ≥5

X-vector clustering [Bredin+’21] 15.32 35.87 19.33

EEND-EDA 15.55 48.30 21.94

EEND-GLA-Small 14.39 44.32 20.23

EEND-GLA-Large 13.64 43.67 19.49

+8.22%

+3.15%

+1.77%

+1.24%

DIHARD III dataset



Real Time Factor

• Computing environment:

• Intel Xeon Gold 6132 CPU @ 2.60 GHz using 7 threads

• No GPU was used

• Dataset

• Sim5spk

• Real time factor increased linearly until the buffer was filled

• The time complexity of EEND-GLA is 𝑂(𝑛3), but not constrained by it at least for buffer length of 100 sec.

• After the convergence, the real time factors were 0.16 (10 frames / sec) and 0.38 (20 frames / sec)
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Summary of Chapter 3

• Problem

• The conventional EEND assumes that the number of speakers is known in advance

• Solutions

• 3-1: End-to-end speaker diarization for flexible numbers of speakers

• Core contribution: Encoder-decoder based attractors for EEND (EEND-EDA)

• Related publications: [INTERSPEECH’20] [TASLP’22]

• 3-2: End-to-end speaker diarization for unlimited numbers of speakers

• Core contribution: Use of attractors from calculated from global and local contexts (EEND-GLA)

• Related publication: [ASRU’21] [TASLP’23]

• 3-3: Online end-to-end speaker diarization for unlimited numbers of speakers

• Core contribution: An extension to speaker-tracing buffer to make it compatible with EEND-GLA

• Related publication: [TASLP’23]
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Thesis Overview
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Speaker

diarization

Speech

separation ASR
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covers products for up to a year. Do you 

know when you bought it?

I’ve had it for a little over a year, so the 

warranty has probably just expired. This 

is so disappointing.

Well, I’ll tell you what we can do. 

Although we can’t replace it, since 

you’re a valued customer I can offer you 

a coupon for forty percent off your next 

purchase.

Chapter 7

Block online speech separation using speaker 

diarization results
[SLT’21]

Chapter 6

Speaker-diarization-driven meeting transcription
[INTERSPEECH’20]

Chapter 3

End-to-end speaker diarization for 

unknown numbers of speakers
[TASLP’22] [TASLP’23] [INTERSPEECH’20] [ASRU’21]

Chapter 4

Multi-channel

end-to-end speaker diarization
[ICASSP’22] [SLT’22]

Chapter 5

End-to-end speaker diarization

as post-processing
[ICASSP’21]



Chapter 4: Multi-Channel End-to-End Speaker Diarization

• Problem

• EEND / EEND-EDA / EEND-GLA only utilize spectral information from single-channel inputs

• Existing multi-channel methods highly depend on spatial information

• Solutions

• 4-1: Multi-channel end-to-end speaker diarization that also handles single-channel inputs

• Core contribution: Co-attention encoder that not rely on cross-channel attention

• Related publication: [ICASSP’22]

• 4-2: Training method of single- and multi-channel end-to-end speaker diarization

• Core contribution: Iterative operation of transfer learning and knowledge distillation between two

• Related publication: [SLT’22]
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4-1: Co-Attention-Based Multi-Channel EEND

• Method: Co-attention

• Process multi-channel input

• Equivalent to the conventional self-attention when the number of channel is one

→ Not heavily rely on spatial information
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4-1: Co-Attention-Based Multi-Channel EEND

• Datasets

• Two types of simulated 10-channel two-speaker datasets

• Sim2spk-multi: Two speakers are at the different positions 

• Sim2spk-multi-hybrid: Two speakers are at the same position

• Results

• Co-attention-based model improved DER by utilizing spatial information

• Co-attention-based model did not degrade even when spatial information is not available

• Sim2spk-multi (1ch) & Sim2spk-multi-hybrid (1, 2, 4, 6, 10ch)
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Sim2spk-multi Sim2spk-

multi-hybrid

Algorithm

Sim2spk-multi Sim2spk-multi-hybrid

1ch 2ch 4ch 6ch 10ch 1ch 2ch 4ch 6ch 10ch

1ch + posterior avg. 5.13 4.60 4.31 4.19 4.10 6.07 5.68 5.42 5.38 5.33

Spatio-temporal [Wang+’21] 6.34 3.02 1.56 1.28 1.07 8.11 8.23 6.98 6.72 6.40

Co-attention (proposed) 4.68 2.52 1.71 1.40 1.23 5.73 5.34 5.05 5.18 5.35



4-2: Mutual Learning of Single and Multi-Channel EEND

• Method: Mutual learning

• Iteratively conduct the following:

• Knowledge distillation from multi-channel to single-channel EEND

• Finetuning from single-channel to multi-channel EEND

• Results

• Proposed method improved DERs of both single- and multi-channel EEND
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Summary of Chapter 5

• Problem

• While the end-to-end approach is promising, cascaded approaches are still powerful

• Cascaded approaches require overlap detection and speaker assignment as the last step

• Solutions

• Use end-to-end speaker diarization for overlap detection and speaker assignment of cascaded 

approaches

• Core contribution: An algorithm to use EEND to refine the results from cascaded approaches

(EEND as post-processing)

• Related publication: [ICASSP’21]
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Chapter 5: End-to-End Speaker Diarization as Post-Processing 

• Method: EEND as post-processing (EENDasP)

For each speaker pair:

1. Select frames not containing other speakers

2. Process the frames using two-speaker EEND

3. Update the results of the frames 

• Results on the DIHARD II dataset

✓ Consistently improved DERs on both datasets

✓ Can be used with other overlap detection and 
assignment methods
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Model DER (%)

DIHARD II baseline [Sell+’20] 40.86

DIHARD II baseline + EENDasP 37.90

BUT system (w/o OVL) [Landini+’20] 27.26

BUT system (w/o OVL) + EENDasP 26.91

BUT system (w/ OVL) [Landini+’20] 27.11

BUT system (w/ OVL) + EENDasP 26.88

Initial results
(from

cascaded method)

Speaker 1

Speaker 2

Speaker 3

1 2 3 4 5 6 7 8 9 10 11 12frame index

Results after

Update #1
(Speakers 2 & 3)

Speaker 1

Speaker 2

Speaker 3

1 2 3 4 5 6 7 8 9 10 11 12frame index

Spk 1

Spk 2

Spk 3

1 2 3 4 5 6 7 8 9 10 11 12frame index

Results after

Update #3
(Speakers 1 & 2)

Speaker 1

Speaker 2

Speaker 3

1 2 3 4 5 6 7 8 9 10 11 12frame index

Results after

Update #2
(Speakers 1 & 3)

Speaker 1

Speaker 2

Speaker 3

1 2 3 4 5 6 7 8 9 10 11 12frame index

OVL: Heuristic-based speaker assignment



Summary of Chapter 6

• Purpose

• To show how speaker diarization is important for meeting transcription

using distributed microphones (e.g., smartphone / tablet device)

without any special devices (microphone arrays, omnidirectional cameras)

• Solutions

• Speaker-diarization-driven meeting transcription using distributed microphones

• Core contribution: Demonstration of the effectiveness of the diarization-driven ASR on the realistic data

• Related publication: [INTERSPEECH’20]
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Chapter 6: System Overview 
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Chapter 6: Result Summary

• Dataset

• ~2 hours of meeting consists of 8 sessions

• 5-8 participants

• 11 smartphones for recording

• Each participant wore a headset microphone

• Results

• Using multiple microphones successfully reduced the ASR performance

measured using the character error rates (CERs)

• If the oracle diarization results were given,

the system achieved nearly headset-level CER

→ Highly accurate speaker diarization is important

• Limitation: Diarization-guided speech separation is super slow
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# of mics CER

1 38.2

2 31.4

3 33.7

6 30.2

11 28.7

11 with oracle 

diarization
21.8

(Headset) (19.2)



Summary of Chapter 7

• Problem

• Diarization-guided speech enhancement (guided source separation [Boeddeker+’18]) is too slow for 

real-time applications

• Solution

• Block-online algorithm of guided source separation

• Core contribution: Real-time operation of guided source separation without performance degradation

• Related publications: [SLT’21]
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Chapter 7: Related Work

• Guided source separation (GSS)

• Utterance-wise separation that utilize pre-context and

post-context of the target utterance (~15 sec for each)

• Use diarization results for conditioning in the separation step

✔ Perform well under unstable conditions (e.g., distributed microphones, moving speakers)

✘ High computational cost due to redundant calculation

(85.44 hours to process 4.46 hours of CHiME-6 data)

✘ Latency depending on utterance/post-context length
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Almost the same processing interval → redundant

k=1 (Noise)
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Processing interval

Target
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Chapter 7: Proposed Method

• Proposed method: Block-online GSS

• Process block-wise inputs with their pre-context only 

✔ Avoid redundancy of utterance-wise processing

✔ Latency depending on the block length 

• Experiments

• Dataset

• Two sessions (S02 & S09) of the CHiME-6 dataset

• S02: 8,902 sec

• S09: 7,160 sec

• Computational environment

• Intel Xeon Gold 6132 CPU @ 2.60 GHz with 1 thread

• Similar ASR performance in word error rate (WER)

• 32x faster calculation, which is fast enough for

real-time operation
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Session

WER Execution time (sec)

S02 S09 S02 S09

Offline GSS
[Boeddeker+’18]

52.2 51.1 183529±9567 124054±7114

Block-online

GSS
50.6 53.3 6135±93 3418±66



Conclusion

• Part 1: Study on speaker diarization

• End-to-end speaker diarization for unknown numbers of speakers (Chapter 3)

• EEND-EDA: A method of overlap-aware diarization of flexible numbers of speakers

• EEND-GLA: A method of overlap-aware diarization of unlimited numbers of speakers

• Block-wise speaker-tracing buffer: A method to enable online decoding of EEND-GLA

• Multi-channel end-to-end speaker diarization (Chapter 4)

• Co-attention encoder: An encoder that can treat any numbers of channels

• Mutual learning: A training method to improve both single- and multi-channel diarization

• End-to-end speaker diarization as post-processing (Chapter 5)

• EEND as post-processing: A method to use EEND for overlap detection of cascaded approaches

• Part 2: Study on applications of speaker diarization

• Speaker-diarization-driven meeting transcription (Chapter 6)

• Meeting transcription system based on distributed microphones

• Block-online speech separation conditioned on speaker diarization results (Chapter 7)

• Block-online guided source separation: Fast and accurate speech separation method
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Future Work

• Joint modeling of speaker diarization, speech separation, and ASR

• Speaker diarization is informative for speech separation and ASR

• Speech separation / ASR is also informative for speaker diarization [Xiao+’21] [India+’17]
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